3.1.21 \(\int \frac {x^5 (1-x^3)}{1-x^3+x^6} \, dx\)

Optimal. Leaf size=31 \[ -\frac {x^3}{3}-\frac {2 \tan ^{-1}\left (\frac {1-2 x^3}{\sqrt {3}}\right )}{3 \sqrt {3}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {1474, 773, 618, 204} \begin {gather*} -\frac {x^3}{3}-\frac {2 \tan ^{-1}\left (\frac {1-2 x^3}{\sqrt {3}}\right )}{3 \sqrt {3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^5*(1 - x^3))/(1 - x^3 + x^6),x]

[Out]

-x^3/3 - (2*ArcTan[(1 - 2*x^3)/Sqrt[3]])/(3*Sqrt[3])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 773

Int[(((d_.) + (e_.)*(x_))*((f_) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*g*x)/
c, x] + Dist[1/c, Int[(c*d*f - a*e*g + (c*e*f + c*d*g - b*e*g)*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c,
 d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1474

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
 Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a,
 b, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^5 \left (1-x^3\right )}{1-x^3+x^6} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {(1-x) x}{1-x+x^2} \, dx,x,x^3\right )\\ &=-\frac {x^3}{3}+\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{1-x+x^2} \, dx,x,x^3\right )\\ &=-\frac {x^3}{3}-\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x^3\right )\\ &=-\frac {x^3}{3}-\frac {2 \tan ^{-1}\left (\frac {1-2 x^3}{\sqrt {3}}\right )}{3 \sqrt {3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 31, normalized size = 1.00 \begin {gather*} \frac {2 \tan ^{-1}\left (\frac {2 x^3-1}{\sqrt {3}}\right )}{3 \sqrt {3}}-\frac {x^3}{3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^5*(1 - x^3))/(1 - x^3 + x^6),x]

[Out]

-1/3*x^3 + (2*ArcTan[(-1 + 2*x^3)/Sqrt[3]])/(3*Sqrt[3])

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^5 \left (1-x^3\right )}{1-x^3+x^6} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[(x^5*(1 - x^3))/(1 - x^3 + x^6),x]

[Out]

IntegrateAlgebraic[(x^5*(1 - x^3))/(1 - x^3 + x^6), x]

________________________________________________________________________________________

fricas [A]  time = 1.64, size = 24, normalized size = 0.77 \begin {gather*} -\frac {1}{3} \, x^{3} + \frac {2}{9} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x^{3} - 1\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(-x^3+1)/(x^6-x^3+1),x, algorithm="fricas")

[Out]

-1/3*x^3 + 2/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^3 - 1))

________________________________________________________________________________________

giac [A]  time = 0.58, size = 24, normalized size = 0.77 \begin {gather*} -\frac {1}{3} \, x^{3} + \frac {2}{9} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x^{3} - 1\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(-x^3+1)/(x^6-x^3+1),x, algorithm="giac")

[Out]

-1/3*x^3 + 2/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^3 - 1))

________________________________________________________________________________________

maple [A]  time = 0.00, size = 25, normalized size = 0.81 \begin {gather*} -\frac {x^{3}}{3}+\frac {2 \sqrt {3}\, \arctan \left (\frac {\left (2 x^{3}-1\right ) \sqrt {3}}{3}\right )}{9} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(-x^3+1)/(x^6-x^3+1),x)

[Out]

-1/3*x^3+2/9*3^(1/2)*arctan(1/3*(2*x^3-1)*3^(1/2))

________________________________________________________________________________________

maxima [A]  time = 0.96, size = 24, normalized size = 0.77 \begin {gather*} -\frac {1}{3} \, x^{3} + \frac {2}{9} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x^{3} - 1\right )}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(-x^3+1)/(x^6-x^3+1),x, algorithm="maxima")

[Out]

-1/3*x^3 + 2/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^3 - 1))

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 26, normalized size = 0.84 \begin {gather*} -\frac {2\,\sqrt {3}\,\mathrm {atan}\left (\frac {\sqrt {3}}{3}-\frac {2\,\sqrt {3}\,x^3}{3}\right )}{9}-\frac {x^3}{3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^5*(x^3 - 1))/(x^6 - x^3 + 1),x)

[Out]

- (2*3^(1/2)*atan(3^(1/2)/3 - (2*3^(1/2)*x^3)/3))/9 - x^3/3

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 32, normalized size = 1.03 \begin {gather*} - \frac {x^{3}}{3} + \frac {2 \sqrt {3} \operatorname {atan}{\left (\frac {2 \sqrt {3} x^{3}}{3} - \frac {\sqrt {3}}{3} \right )}}{9} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(-x**3+1)/(x**6-x**3+1),x)

[Out]

-x**3/3 + 2*sqrt(3)*atan(2*sqrt(3)*x**3/3 - sqrt(3)/3)/9

________________________________________________________________________________________